If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying z4 + -8z2 + -11 = 0 Reorder the terms: -11 + -8z2 + z4 = 0 Solving -11 + -8z2 + z4 = 0 Solving for variable 'z'. Begin completing the square. Move the constant term to the right: Add '11' to each side of the equation. -11 + -8z2 + 11 + z4 = 0 + 11 Reorder the terms: -11 + 11 + -8z2 + z4 = 0 + 11 Combine like terms: -11 + 11 = 0 0 + -8z2 + z4 = 0 + 11 -8z2 + z4 = 0 + 11 Combine like terms: 0 + 11 = 11 -8z2 + z4 = 11 The z term is -8z2. Take half its coefficient (-4). Square it (16) and add it to both sides. Add '16' to each side of the equation. -8z2 + 16 + z4 = 11 + 16 Reorder the terms: 16 + -8z2 + z4 = 11 + 16 Combine like terms: 11 + 16 = 27 16 + -8z2 + z4 = 27 Factor a perfect square on the left side: (z2 + -4)(z2 + -4) = 27 Calculate the square root of the right side: 5.196152423 Break this problem into two subproblems by setting (z2 + -4) equal to 5.196152423 and -5.196152423.Subproblem 1
z2 + -4 = 5.196152423 Simplifying z2 + -4 = 5.196152423 Reorder the terms: -4 + z2 = 5.196152423 Solving -4 + z2 = 5.196152423 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '4' to each side of the equation. -4 + 4 + z2 = 5.196152423 + 4 Combine like terms: -4 + 4 = 0 0 + z2 = 5.196152423 + 4 z2 = 5.196152423 + 4 Combine like terms: 5.196152423 + 4 = 9.196152423 z2 = 9.196152423 Simplifying z2 = 9.196152423 Take the square root of each side: z = {-3.032515857, 3.032515857}Subproblem 2
z2 + -4 = -5.196152423 Simplifying z2 + -4 = -5.196152423 Reorder the terms: -4 + z2 = -5.196152423 Solving -4 + z2 = -5.196152423 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '4' to each side of the equation. -4 + 4 + z2 = -5.196152423 + 4 Combine like terms: -4 + 4 = 0 0 + z2 = -5.196152423 + 4 z2 = -5.196152423 + 4 Combine like terms: -5.196152423 + 4 = -1.196152423 z2 = -1.196152423 Simplifying z2 = -1.196152423 Reorder the terms: 1.196152423 + z2 = -1.196152423 + 1.196152423 Combine like terms: -1.196152423 + 1.196152423 = 0.000000000 1.196152423 + z2 = 0.000000000 The solution to this equation could not be determined.This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| (4x+5)(x^2+1)= | | 900/108 | | e=0.22s+150 | | 16(x-3)=33 | | 3x-3y=30 | | 12x-9=6x+3 | | 27=2.5x+3 | | 10x^2=50 | | (9x-4)(3x+6)= | | -11=8/7r+29 | | (4x^2-5x^3)-(9x^2-8x^3)= | | 2+m/m=1/3 | | 7x=2(15+x) | | 8(b+5)=8(b-3) | | 4x^2+y^2-32x-6y+64=0 | | 6(3+6x)-4=122 | | logy=1.8 | | 7x^2+23x-48=0 | | x^2-(12x)=10 | | x-8.1=-5.3 | | 2y^2-9y=10 | | 2x^2+47=0 | | z+27=19 | | x^2(-12x)=10 | | -4y^2+4y=-9 | | x^2-12x=10 | | 4y^2+8y=3 | | 2a+1=11 | | x^4+9x^2=25-20 | | 6(x-10)2=144 | | 0.6x-0.4(40+x)=-0.05(40) | | 2m+2=m+1 |